K-Means 工作原理

工作原理很简单:

  1. 选取 K 个点作为初始的类中心点,这些点一般都是从数据集中随机抽取的;
  2. 将每个点分配到最近的类中心点,这样就形成了 K 个类,然后重新计算每个类的中心点;
  3. 重复第二步,直到类不发生变化,或者你也可以设置最大迭代次数,这样即使类中心点发生变化,但是只要达到最大迭代次数就会结束。

使用 K-means 算法

1
2
3
from sklearn.cluster import KMeans

KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto')

们能看到在 K-Means 类创建的过程中,有一些主要的参数:

  • n_clusters: 即 K 值,一般需要多试一些 K 值来保证更好的聚类效果。你可以随机设置一些 K 值,然后选择聚类效果最好的作为最终的 K 值;
  • max_iter: 最大迭代次数,如果聚类很难收敛的话,设置最大迭代次数可以让我们及时得到反馈结果,否则程序运行时间会非常长;
  • n_init:初始化中心点的运算次数,默认是 10。程序是否能快速收敛和中心点的选择关系非常大,所以在中心点选择上多花一些时间,来争取整体时间上的快速收敛还是非常值得的。由于每一次中心点都是随机生成的,这样得到的结果就有好有坏,非常不确定,所以要运行 n_init 次, 取其中最好的作为初始的中心点。如果 K 值比较大的时候,你可以适当增大 n_init 这个值;
  • init: 即初始值选择的方式,默认是采用优化过的 k-means++ 方式,你也可以自己指定中心点,或者采用 random 完全随机的方式。自己设置中心点一般是对于个性化的数据进行设置,很少采用。random 的方式则是完全随机的方式,一般推荐采用优化过的 k-means++ 方式;
  • algorithm:k-means 的实现算法,有“auto” “full”“elkan”三种。一般来说建议直接用默认的”auto”。简单说下这三个取值的区别,如果你选择”full”采用的是传统的 K-Means 算法,“auto”会根据数据的特点自动选择是选择“full”还是“elkan”。我们一般选择默认的取值,即“auto” 。

在创建好 K-Means 类之后,就可以使用它的方法,最常用的是 fit 和 predict 这个两个函数。你可以单独使用 fit 函数和 predict 函数,也可以合并使用 fit_predict 函数。其中 fit(data) 可以对 data 数据进行 k-Means 聚类。 predict(data) 可以针对 data 中的每个样本,计算最近的类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding: utf-8
from sklearn.cluster import KMeans
from sklearn import preprocessing
import pandas as pd
import numpy as np
# 输入数据
data = pd.read_csv('data.csv', encoding='gbk')
train_x = data[["2019 年国际排名 ","2018 世界杯 ","2015 亚洲杯 "]]
df = pd.DataFrame(train_x)
kmeans = KMeans(n_clusters=3)
# 规范化到 [0,1] 空间
min_max_scaler=preprocessing.MinMaxScaler()
train_x=min_max_scaler.fit_transform(train_x)
# kmeans 算法
kmeans.fit(train_x)
predict_y = kmeans.predict(train_x)
# 合并聚类结果,插入到原数据中
result = pd.concat((data,pd.DataFrame(predict_y)),axis=1)
result.rename({0:u'聚类'},axis=1,inplace=True)
print(result)

K-means 聚类分割

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# 使用 K-means 对图像进行聚类,并显示聚类压缩后的图像
import numpy as np
import PIL.Image as image
from sklearn.cluster import KMeans
from sklearn import preprocessing
import matplotlib.image as mpimg

# 加载图像,并对数据进行规范化
def load_data(filePath):
# 读文件
f = open(filePath,'rb')
data = []
# 得到图像的像素值
img = image.open(f)
# 得到图像尺寸
width, height = img.size
for x in range(width):
for y in range(height):
# 得到点 (x,y) 的三个通道值
c1, c2, c3 = img.getpixel((x, y))
data.append([c1, c2, c3])
f.close()
# 采用 Min-Max 规范化
mm = preprocessing.MinMaxScaler()
data = mm.fit_transform(data)
return np.mat(data), width, height

# 加载图像,得到规范化的结果 img,以及图像尺寸
img, width, height = load_data('./weixin.jpg')


# 用 K-Means 对图像进行 2 聚类
kmeans =KMeans(n_clusters=2)
kmeans.fit(img)
label = kmeans.predict(img)
# 将图像聚类结果,转化成图像尺寸的矩阵
label = label.reshape([width, height])
# 创建个新图像 pic_mark,用来保存图像聚类的结果,并设置不同的灰度值
pic_mark = image.new("L", (width, height))
for x in range(width):
for y in range(height):
# 根据类别设置图像灰度, 类别 0 灰度值为 255, 类别 1 灰度值为 127
pic_mark.putpixel((x, y), int(256/(label[x][y]+1))-1)
pic_mark.save("weixin_mark.jpg", "JPEG")